当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。通过记录心得体会,我们可以更好地认识自己,借鉴他人的经验,规划自己的未来,为社会的进步做出贡献。下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。 公文汇,办公文档之家
大数据课设的心得体会和感悟篇一
信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变,我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。 公文汇,办公文档之家
信息和数据的定义。维基百科解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。 公文汇,办公文档之家
在大数据时代,大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理。小数据停留在说明过去,大数据用驱动过去来预测未来。数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。大数据是在互联网背景下数据从量变到质变的过程。小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。 公文汇,办公文档之家
数据未来的故事。数据的发展,给我们带来什么预期和启示?金融业业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的学习空间、可以有更精准的决策判断能力这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。 公文汇,办公文档之家
一部似乎还没有写完的书。
——读《大数据时代》有感及所思。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!
更何况还有两个更可怕的事情。
其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
合纤部车民。
2013年11月10日。
一、学习总结。
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现。
对企业未来运营的预测。
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
大数据课设的心得体会和感悟篇二
如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。
一读。
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分“大数据时代的思维变革”中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。“大数据的简单算法比小数据的复杂算法更有效。”更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。“不是因果关系,而是相关关系。”不需要知道“为什么”,只需要知道“是什么”。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出“不是因果关系,而是相关关系。”这一论断时,他在书中还说道:“在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。”[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可“量化”,大数据的定量分析有力地回答“是什么”这一问题,但仍然无法完全回答“为什么”。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节“掌控”中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:“大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。”谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
再读。
概念是研究的逻辑起点,“大数据”到底是什么?在百度上搜索到的解释是,“大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”大数据的4v特点:数量(volume)、速度(velocity)、品种(variety)和真实性(veracity)。但舍恩伯格认为大数据并非一个确切的概念。他在书中的一段诠释更具人文色彩和社会意义:“大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”[ii]其实,概念的界定要看研究者从哪个角度来研究它而定。
科学家的治学态度是严谨的,而人文学家更具有想象力。一些对大数据不甚了然的人往往夸大了它的作用,甚至把它神化。舍恩伯格认为大数据的核心是预测。“大数据不是要教机器像人一样思考。相反,把数学算法运用到海量的数据上来预期事情发生的可能性。”[iii]舍恩伯格甚至不回避大数据所产生的负面影响,他在第七章里谈到让数据主宰一切的隐忧。我觉得这是实事求是的科学态度。在量子力学里有一个测不准原理:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。它是解释微观世界的物理现象,信息社会中的大数据会不会也有类似情况呢?如果我们再把凯文·凯利的《失控》对比来读的话就更有意思了,这样我们对整个物质世界及至人类社会就有了更全面更深刻的洞察,从物理王国到生物世界,再到信息社会。从公共卫生到商业应用,从个人隐私到政府管理,大数据无处不在。与此同时,从哪个角度探讨用什么方法研究,舍恩伯格都不会忘记大数据服务人类造福人类的终极目的和价值所在。“大数据并不是一个充斥着运算法则和机器的冰冷世界,其中仍需要人类扮演重要角色。人类独有的弱点、错觉、错误都是十分必要的,因为这些特性的另一头牵着的是人类的创造力、直觉和天赋。偶尔也会带来屈辱或固执的同样混乱的大脑运作,也能带来成功,或在偶然间促成我们的伟大。这提示我们应该乐于接受类似的不准确,因为不准确正是我们之所以为人的特征之一。”[iv]用中国话来说就是“人无完人”,人类在收获大数据带来的红利的同时也要承受它带来的危害。这不是对立统一的辩证唯物主义?我把它看作带着欧洲批判学派色彩的科学发展观。
问题是研究的价值基点,“大数据”不是舍恩伯格研究的问题,而是研究对象,他研究的是数据处理和信息管理问题,同时也讨论信息安全和网络伦理问题,还引发哲学上的思考,哲学史上争论不休的世界可知论和不可知论转变为实证科学中的具体问题。可知性是绝对的,不可知性是相对的。“大数据”之所以为大是因它引发人类生活、工作和思维的大变革,从这个意义上来看,《大数据时代》的意义不仅在于它讨论了若干重大问题,而且对研究者开出了一个问题清单,从而引发更多人来探讨这些有趣的问题。
《大数据时代》实际上主要是一本讨论数据挖掘的书,数据挖掘与数据分析是不同的概念,数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。而数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。数据挖掘主要运用计算机来进行处理,而数据分析既要用计算机也要人工分析,是计算机科学与人文价值判断的统一结合。换言之,《大数据时代》并不是一本讨论大数据所有问题的书。
《大数据时代》也是一本讨论互联网发展的书,从数字化到数据化,同时有浓厚的未来学色彩。当文字变成数据,我们进入了互联网;当方位变成数据,我们进入了物联网;当沟通变成数据,我们进入了下一代互联网。一切可量化,万物皆数据,正是当今互联网世界的真实写照。面对于这样的世界及世界的未来,在《大数据时代》出现最多的词是“思维”和“方法”,因此也可以把这本书视为思维科学应用研究的书。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
三读。
今年国庆节前一天,中共中央政治局们来到中关村搞集体学习,调研、讲解、讨论创新驱动发展战略。包括、在内的七位全部出动来到中关村,这是历史上没有过的,百度、联想和小米的负责人,有了一次直面最高层汇报工作的机会。雷军和柳传志,讲解的都是本公司的各种情况,李彦宏则没有讲百度的广告业务发展得如何好,而是讲起了大数据。在讲解中,李彦宏认为大数据有两个重要价值,一是促进信息消费,加快经济转型升级;二是关注社会民生,带动社会管理创新。这些价值也是目前党和国家领导人最为重视的,可见《大数据时代》既有理论价值也有现实意义。
当今大数据正在影响着新闻传媒业,大数据新闻、大数据营销、舆情分析、受众(用户)研究……数据分析师变身新闻编辑,大数据正改变新闻生产流程、大数据在创造传媒新业态。“不妨想象一下,随着数据的进一步增加,坐拥用户资源的新媒体们完全有能力通过数据挖掘,分析用户癖好,向电视台定制一部电视剧甚至向好莱坞定制一部电影。到那个时候,电视台一如那些家电厂商们,曾经产业链的上游‘王者’,将彻底成为一个产业链最低端的内容代工厂。”[v]然而,情形也远没有人们想象的那么乐观,李彦宏指出目前多数所谓的大数据公司其实还是空壳子,因为数据还没有完全开放。他认为必须在政府层面上推动才能真正实现大数据的开发与利用。我在讨论大数据时代的舆情监测与预警时说道:“经典自由主义传播学说对媒体的定位:秉持公正、客观立场的媒体被称为代表公众监督政府行为的‘看门狗’。其实,媒体既是公众利益也是国家利益的‘看门狗’。要看好门就要瞭望、洞察社情民意,传统媒体信息反馈渠道单一,视野、人力十分有限。而开放互动的新媒体平台却大有可为。作为公共信息发布平台的微博可以成为政府及时了解社情民意,从而选择正确治理路径的‘导盲犬’。”[vi]遗憾的是目前我国的数据平台还没有完全开放,真正的大数据时代还没有到来。
与国内不少教科书写法的专著相比,国外的书写得更有趣,尤其是大学者写的,不仅视野开阔,而且能够深入浅出。《大数据时代》不到22万字,却有上百个学术和商业的实例,丰富翔实的例子让读者感到通俗易懂,深奥的理论看起来也不费劲。这恐怕与舍恩伯格既是学者也是专家,既有理论又有实践有关。反观我们些学者故弄玄虚而示高明,实际上是把读者拒之门外。我觉得优秀的科学家也应该是一个科普作家,优秀的学者也应该是一个不错的传播者。当然国外学术著作也有一个翻译问题,这本书译得还不错。此外,《大数据时代》还附有不少it界名流的推荐意见,虽是出版商的发行所为,对解读此书也不无益处。
除了《大数据时代》,舍恩伯格还有一本《删除》也值得一读。要研究大数据不能只读一本书,该书译者周涛教授还推荐了三部国内出版的大数据方面的专著:《证析》、《大数据》、《个性化:商业的未来》。相比《大数据时代》的宏大视野,这些书就大数据某一局部问题给出深刻的介绍和洞见。我也推荐读一读中国工程院李国杰院士和中科院计算所副总工程学旗合写的文章《大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考》。
虽说开卷有益,但是由于每个人的时间精力有限,对于一个研究者来说,不读什么书甚至比读什么书更重要。我认为书有三种:有用的书,主要是应用类的专业书;无用的书,主要是形而上的思想类;无字的书,人间百态,社会现实。可偏重但不应偏废。对于学生来讲这三类“书”都该读一些,对于研究者则要读哪些解决关键问题的书,《大数据时代》就是这样一部书。当然,并非第一个读者都是研究大数据的,但进入大数据时代,还有什么东西与数据完全没有关系呢?麦肯锡全球研究机构认为,未来十年里有12项对经济发展产生重大影响的技术,其中包括三项新媒体技术:移动互联网、物联网和云计算。这三项新媒体技术都与大数据密切相关,而这些新媒体新技术的发展都影响着当今的新闻传播业。阅读此书至少给我们研究新闻传播学带来一些启迪。我觉得一本书的价值不在于让你顶礼膜拜,而是引发广泛而深入的讨论。
“凡是过去,皆为序曲。”读完此书,我们对大数据的认识才刚刚开始。
大数据课设的心得体会和感悟篇三
如今,大数据时代成为炙手可热的话题。你知道读大数据时代。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力??可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
-->。
大数据课设的心得体会和感悟篇四
铁路大数据在不断追求效率和安全的同时,也为铁路行业带来了巨大的变革和机遇。正是在铁路大数据的支持下,我们看到铁路运输的效率不断提升,安全风险大幅降低。在过去几年的实践中,我深切体会到了铁路大数据的重要性和应用价值。本文将从数据收集和分析、运维管理、安全生产、客流服务和智能化建设等五个方面,分享我在铁路大数据应用中的心得体会。
首先,铁路大数据的核心是数据的收集和分析。在铁路运输过程中,各种传感器、无人系统和监控设备能够实时采集列车运行、信号状况等各种数据。通过对这些数据的深入分析,可以了解列车运行状态、设备工作情况等信息,为运输决策提供依据。例如,通过对每个车站实时客流的数据分析,铁路管理部门可以调整列车的班次和座位数量,提高运输效率。数据的分析还能发现设备的故障和异常,及时进行检修和维护,保障列车的安全运行。
其次,铁路大数据在运维管理方面发挥着重要作用。传统的人工巡检难以对所有细节进行全面监控,而大数据技术则可以帮助进行更加精确的设备监测。借助物联网技术,可以实时监测设备的运行状况,发现设备故障和异常。此外,铁路大数据应用还能实现对运输资源的动态调配,优化设备的使用效率,减少资源浪费。同时,大数据分析还能根据设备的使用情况预测设备的寿命和维修周期,提前进行维护和更换,降低维护成本。
第三,铁路大数据在安全生产方面的应用不可小觑。通过数据分析技术,能够及时监测列车运行中的安全隐患,发现风险和预警。例如,通过对列车运行速度、信号灯状态等数据的分析,可以及时发现列车超速、信号失灵等异常情况,避免事故发生。此外,大数据分析还能根据历史数据的统计和分析,对铁路运输过程中可能遇到的风险进行预测,并制定相应的应对措施,提高安全性。
第四,铁路大数据在客流服务中的应用也为旅客提供了更好的服务体验。通过对客流数据的分析,铁路管理部门可以预测高峰时段的客流量,合理安排列车的班次,提高运输效率。同时,通过数据分析可以及时获取旅客需求,精准推送旅客所需的服务信息,如列车时刻表、票务信息等,提升旅客满意度。此外,铁路大数据应用还能为旅客提供智能导航服务,帮助旅客查询车次、购票、换乘等信息,让旅客的出行更加便捷。
最后,铁路大数据的应用也推动了铁路智能化建设的发展。通过大数据技术的支持,铁路管理部门可以实现对全网的监控和管理,实现智能化运营和调度。例如,可以在列车与列车之间保持最佳的运行间隔,提高运行效率;可以根据列车的实时位置和运行速度,智能调整信号灯,保证列车的安全通行。此外,铁路大数据还能与其他领域的大数据相结合,实现信息的共享和交流,推动智慧铁路的建设。
综上所述,铁路大数据的应用带来了许多好处,为铁路行业带来了革命性的改变。我深切体会到铁路大数据的重要性和应用价值,它能够提高铁路运输的效率和安全性,优化运维管理,提升客流服务,推动智慧铁路的建设。我相信随着技术的不断发展,铁路大数据在未来会发挥更加重要的作用,为铁路行业持续创新和发展带来更大的助力。
大数据课设的心得体会和感悟篇五
随着信息技术的不断发展和普及,大数据已经成为了当今社会中不可或缺的一部分。大数据的处理和分析能力给我们带来了诸多便利,但同时也伴随着一系列潜在的风险。在大数据时代,我们必须认识到并应对这些风险,以保证自身信息的安全和隐私的保护。
首先,大数据的风险在于个人隐私的泄露和滥用。随着大量个人数据在网络上的存储和交换,黑客和恶意分子也找到了许多途径来获取这些数据。如果我们不加以保护,个人的隐私信息将面临着极高的风险。我们经常听闻各类社交媒体的账户被盗、个人隐私泄露的案例,这都提示着我们必须增加对个人信息的保护意识。与此同时,企业和政府也必须加强对大数据的安全管理和监管,确保个人隐私不被滥用。
其次,大数据的风险也体现在信息的误用和不当处理上。虽然大数据的分析能力非常强大,但如果分析结果被错误地解读或不当地使用,将会带来严重的后果。比如,医疗大数据在帮助研究疾病和药物时可能遭到不当使用,导致错误的诊断和治疗方案。因此,我们需要在使用大数据时审慎思考和深入分析,不仅要关注统计结果的本身,还要结合实际情况进行综合判定。
此外,大数据的风险还包括数据的滥用和篡改。在大数据时代,数据是一种重要的资源,对企业和政府来说具有非常高的价值。为了获取更多的数据,一些企业可能会不择手段,将没有经过用户同意的个人数据加以收集和使用。此外,也有可能出现数据被篡改,造成错误的决策和结果。要应对这些风险,我们需要加强对数据使用的监督和控制,明确数据的来源和使用目的。同时,政府也应通过立法和监管加强对大数据滥用和篡改的打击力度。
最后,大数据风险的心得体会还包括了人工智能和机器学习算法的风险。在大数据时代,人工智能和机器学习算法在各个领域得到广泛应用,并取得了显著的成果。然而,这些算法的运行过程可能存在着一些潜在的问题,比如算法的偏见问题、个人信息的暴露问题等。为了减少这些风险,我们需要开展更多的研究和监督,不断完善和优化这些算法的运行机制。
综上所述,大数据在给我们带来便利的同时也带来了许多风险。我们应该保持警惕,增强对个人信息的保护意识,在使用大数据时审慎思考和深入分析。同时,企业和政府也应加强对大数据的安全管理和监管,确保大数据能够为社会发展和人民生活带来更多的福祉。只有在全社会共同努力下,我们才能更好地应对大数据时代的风险挑战,实现大数据应用的良性发展。
大数据课设的心得体会和感悟篇六
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
本书从思维、商业、管理三个方面阐述了在大数据时代在下的变革,这些变革涉及到我们生活的方方面面,几乎其影响程度可以与两次工业革命相媲美。作者在第一部分提出了三个比较令人震惊的观点,也就是大数据的精髓在于我们分析信息时的三个转变,这三个转变将改变我们的理解和组建社会的方法。并且作者将生活,工作思维的大变革和这几个方面紧紧联系在一起。
第三个改变是不是因果关系而是相关关系,在大数据时代,我们更需要了解一个东西是什么,而不是为什么,要找到关联无,通过一个良好的关联物的相关关系可以帮助我们捕捉预测未来。
这三个方面是大数据时代所给我们带来的思维上的改变,所谓思路决定出路,思路有了创新,有了拓展,相应的社会也就会有很大的变化。紧接着第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力。第三部分则是阐述了大数据时代下的弊端以及在管理上的措施。个人认为本书的精髓部分是第一部分,第一部分的三个观点涉及的面很广,包括统计学、逻辑学、哲学等。后两个部分都是以第一部分这三个观点为基础展开阐述的。
这本书给我感触最深的.就是这三个转变,或者说是三个观点,可以说是哲学上说的世界观,因为世界观决定方法论,所以这三个观点对传统看法的颠覆,就会导致各种变革的发生。
首先是第一个,作者认为在抽样研究时期,由于研究条件的欠缺,只能以少量的数据获取最大的信息,而在大数据时代,我们可以获得海量的数据,抽样自然就失去它的意义了。放弃了随机分析法这种捷径,采用所有的数据。作者用大数据与乔布斯的癌症治疗例子说明了使用全部数据而非样本的意义,列举了日本“相扑”等来证明使用全体数据的重要性。
这个观点足以引起统计学乃至社会文明的变革,因为统计抽样和几何学定理、万有引力一样被看做文明得以建立牢固的基石。我对这个观点还是比较认同的,如果真能收集到整体的数据而且分析数据的工具也足够先进,自然是全体数据研究得出的结果更令人信服。但是这个观点也过于绝对,就算是在大数据时代要想收集到全体数据还是不太可能实现的,因为收集全体数据要付出的代价有时会很大。比如说,你要检测食品中致癌物质是否超标,你不可能每一件食品你都检测一遍吧。
第二,要效率不要绝对的精确。作者说,执迷于精确性是信息缺乏时代和模拟时代的产物,只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用。作者是基于数据不可能百分之百正确的考虑而做出这样的判断的,如果采用小数据一个数据的错误就会导致结果的误差很大,但是如果数据足够多、数据足够杂那得出的结果就越靠近正确答案。大数据时代要求我们重新审视精确性的优劣,甚至还说到大数据不仅让我们不再期待精确性,也让我们无法实现精确性。谷歌翻译的成功很好地证明了这一点,谷歌的翻译系统不像candide那样精确地翻译每一句话,它谷歌翻译之所以优于ibm的candide系统并不是因为它拥有更好的算法机制,和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。
而在阅读这本书时,发现这本书中争议最大的一个观点,不仅是读者,就算是本书的译者也在序言中明确地说到他不认同“相关关系比因果关系更重要”的观点。作者觉得相关关系对于预测一些事情已经足够了,不用花大力气去研究他们的因果关系。作者用林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分利用并挖掘各类数据信息的代表,从啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于他们策略的帮助。
一句话,知道是什么就够了,不用知道为什么。很明显作者所举的例子都是属于商业领域的,但是对于其他领域来说这个观点就值得商榷了。比如说,在科学研究领域,你需要知其然也需要知道其所以然,找到事件发生的原理。用文中的一个例子说明,乔布斯测出整个基因图谱来治疗癌症,但是你治疗癌症你必须知道癌症发病的原理,知道哪一段基因导致了这种疾病,不可能只是说收集各种数据,然后利用其相关性来判断哪里出现了问题。
过度依赖所带来的后果。也用《少数派的报告》这部电影来说明如果痴迷于数据会导致我们将生活在一个没有独立选择和自由意志的社会,如果一切变为现实,我们将被禁锢在大数据的可能性之中。所以书中提出了几种解决方法,一种是使用数据时征询数据所有个人的知晓和授权。第二个技术途径就是匿名化。毫无疑问,大数据将会给社会管理带来巨大的变革。
在这个信息爆炸的时代,大数据给人类社会的方方面面带来了巨大的变革,这是社会发展的潮流,不可逆转,我们只有顺应这种潮流,把握住大数据时代变革的思想,才能在时代潮流中成为佼佼者,在思维上思路上略高一筹,才能在行动中占得先机!
大数据课设的心得体会和感悟篇七
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道20__年出现的h1n1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
大数据课设的心得体会和感悟篇八
第一段:引言(120字)。
大数据已经成为当今社会的热点话题之一,其应用正在深入我们生活的各个领域。作为一名大数据专业的学生,我非常幸运能够参加大数据上课,并有机会深入了解和学习有关大数据的知识和技能。在这篇文章中,我将分享我在上课过程中得到的心得体会。
第二段:认识大数据(240字)。
在上课之初,我对大数据的概念只是模糊的了解,大数据上课的第一堂课为我揭开了神秘的面纱。我们学习了大数据的定义、特点以及在各个行业中的应用。通过实例的引导,我更加清晰地理解了大数据是如何通过收集、处理和分析海量数据来产生洞察力和商业价值的。
第三段:深入学习与实践(360字)。
在接下来的大数据上课中,我们学习了大数据的处理技术和工具。我们了解了Hadoop、Spark和NoSQL等重要的大数据处理平台和数据库,并学会了使用这些工具来处理和分析真实的大数据集。通过实践和项目,我深入理解了数据的预处理、清洗、可视化和建模技术,以及如何对大数据进行机器学习和深度学习。
第四段:挑战与收获(360字)。
大数据上课并不是一帆风顺的,其中也存在着一些挑战。我们需要面对庞大的数据集、复杂的分析算法和高要求的计算能力。但正是这些挑战让我更加坚定了对大数据的热爱和学习的动力。通过努力和团队合作,我成功地完成了多个大数据项目,并从中收获了巨大的成就感和学习上的进步。
第五段:展望未来(120字)。
大数据技术的应用正在深入各个领域,对人才的需求也逐渐增长。在大数据上课的学习中,我不仅仅掌握了专业知识和技能,更培养了数据思维和解决问题的能力。因此,我对未来充满信心,期待将来能够利用所学的知识和技术,参与到大数据相关的工作中,为推动社会的发展和进步做出贡献。
总结(120字)。
通过大数据上课的学习,我对大数据有着更全面和深入的了解。这门课不仅帮助我掌握了大数据的概念、技术和工具,更重要的是让我培养了数据思维和解决问题的能力。我相信这些宝贵的学习和经验将成为我未来发展的强大动力。
大数据课设的心得体会和感悟篇九
随着数字化时代的到来,大数据已经成为了企业发展的重要工具。利用大数据分析可以为企业提供更准确的市场预测和消费者洞察,帮助企业做出更明智的决策。然而,大数据同时也伴随着风险。本文将从数据隐私泄露、数据安全漏洞、数据误导性、数据虚报和数据破坏性五个方面探讨大数据风险,并分别提出相应的应对策略。
首先,数据隐私泄露是大数据运用中的一个重要风险。在大数据分析过程中,企业需要收集大量的个人信息和敏感数据,这其中就包括了用户的姓名、地址、电话号码等。如果这些数据不被妥善管理,就有可能被黑客攻击或内部人员泄露,进而导致用户的隐私被侵犯。为了降低这种风险,企业需要加强数据安全意识,建立完善的数据存储和管理措施,确保用户的个人信息不会被滥用。
其次,数据安全漏洞也是大数据风险中的一个关键问题。在大数据应用过程中,企业需要运用各种软件和硬件设备来存储和处理数据。然而,这些设备往往存在安全漏洞,容易遭受黑客攻击。为了减少这种风险,企业需要定期更新软件和硬件设备的安全补丁,以便及时修补漏洞,增强系统的安全性。
第三,数据误导性是大数据风险中的一个常见问题。大数据分析过程中,数据的质量和准确性对于决策的科学性和有效性至关重要。然而,由于数据源的不确定性和数据处理的复杂性,很容易产生数据的误导性,导致企业做出错误的决策。为了应对这种风险,企业需要加强对数据的验证和核查,确保数据的准确性和可靠性,同时要保持科学和客观的态度,不盲目追求数据的数量,而是注重数据的质量。
第四,数据虚报是另一个大数据风险方面需要关注的问题。为了迎合上级的期望和企业的目标,有些企业可能会通过人工干预或其他手段来虚报数据,从而让数据分析结果失去真实性。为了防止这种行为,企业需要建立内部监督机制,加强数据分析过程的透明度和监管,严禁任何形式的数据虚报行为。
最后,大数据的破坏性也是需要引起企业重视的一个风险。在大数据分析过程中,错误的数据处理和决策可能会对企业的品牌形象和经营状况造成毁灭性的影响。为了降低这种风险,企业需要在数据分析前进行充分的调研和风险评估,做好数据备份和灾难恢复措施,同时建立危机管理团队,及时应对可能出现的问题,并尽快采取补救措施。
综上所述,大数据风险是企业在利用大数据时必须面对的问题。我们需要保持谨慎的态度,认识到大数据所带来的风险,并采取相应的策略,优化企业的大数据管理和分析过程,确保数据的安全和准确性,最大限度地发挥大数据的价值。只有这样,企业才能在数字化时代取得持续发展和竞争优势。
大数据课设的心得体会和感悟篇十
随着科技的不断发展和智能化的趋势,物流行业也在不断地变革和进步。而物流大数据作为信息时代的产物,正逐渐成为物流行业的重要力量。通过运用物流大数据,企业能够更好地进行预测和优化,提高运输效率和降低成本。本文将从数据收集、分析和应用三个方面,探讨物流大数据在现代物流行业中的作用和心得体会。
首先,物流大数据的核心在于数据收集。在整个物流过程中,各个环节都会产生大量的数据,包括产品信息、订单信息、仓储信息、运输信息等等。而对这些数据的有效收集和整理,是物流大数据的第一步。只有通过全面而准确地收集数据,才能为后续的分析和应用打下坚实的基础。因此,物流企业需要建立完善的数据收集机制,包括设立数据采集点、使用先进的传感器技术等,以确保数据的准确性和完整性。同时,还需要制定相应的数据管理和存储政策,确保数据的安全性和可追溯性。
其次,物流大数据的核心在于数据分析。通过对收集到的大数据进行科学和合理的分析,能够帮助企业发现潜在问题和机会,优化运营流程和提升客户满意度。在数据分析的过程中,可以利用数据挖掘、机器学习和人工智能等技术,对数据进行深度挖掘和解读。例如,通过对历史订单数据的分析,可以发现消费者的购买偏好和行为习惯,从而优化库存管理和配送路线规划。又如,通过对实时运输数据的分析,可以实现对运输进程的实时监控和预测,避免延误和损失。因此,数据分析在物流大数据中扮演着关键的角色,它为企业提供了更多的决策依据和战略思考。
最后,物流大数据的核心在于数据应用。收集和分析数据只是物流大数据的前两个环节,真正的价值在于将数据应用到实际的运营中。通过合理地利用物流大数据,企业能够提高整个供应链的可视性和透明度,优化运输和配送流程,提高客户满意度。例如,通过大数据分析,企业可以实现对库存和库房的精确管理,避免过量或过少的库存,提高利润和资金使用效率。又如,通过大数据分析,企业可以实现对货物的实时跟踪和定位,提高运输的准确性和效率。因此,数据应用是物流大数据能否发挥价值的关键环节,它需要企业有正确的决策和行动能力。
总结而言,物流大数据在现代物流行业中扮演着重要的角色。数据的收集、分析和应用是物流大数据的核心,也是企业在运用物流大数据时需要注意和努力的方面。只有将物流大数据与企业实际运营紧密结合起来,才能实现物流行业的创新和提升。因此,我对物流大数据的心得体会就是,在收集数据时要准确完整,在分析数据时要科学合理,在应用数据时要有正确的决策和行动能力。通过这样的方式,我们才能更好地利用物流大数据,推动物流行业的发展,为社会经济的繁荣做出贡献。
大数据课设的心得体会和感悟篇十一
我主要读了第一部分和第三部分。
第一部分是大数据的思维变革,作者舍恩伯格提出了三个观点,一是"不是随机样本,而是全体数据",二是"不是精确性,而是混杂性",三是"不是因果关系,而是相关关系",作者被誉为"大数据时代的预言家",抛出的观点是掷地有声的,下面我将谈谈我对这三点的理解。
是省时省力省钱的,而且判断结果是相对高精准的,如人口普查这一案例,如果采用全体数据进行统计分析的话,工作难度是相当大的,最后的结果也不会很满意,这是得不偿失的。但是随着数据处理技术的飞速发展,我们已经具备了处理大量数据的能力,如果在数据分析过程中采用全体数据,就能避免抽样数据可能由于选取偏见带来的非随机性,处理全体数据也必将成为一种趋势。用在国防生管理工作中,就是管理层要对每个个体都给予充分的关心与互动,对于优秀的固然要偏爱,但是对于较差的也要保持"不抛弃不放弃"的态度,让每一个个体都找到自己的定位与价值。
暂时牺牲精确性,关注更多容易被忽略的细节,来做更多的事,得到更多的结果,也就是说我们要有一定的包容错误的能力。我们在收集数据时,要主动获取更多的数据,少加一些限制性条件,然后应用我们处理大数据的能力,或许会获得意想不到的结果。作者举了一个谷歌翻译系统的例子,通过英语作为中转,进行各语言之间的转换。此处的启发就是用我们最擅长的途径,不拘泥于特定规则,来达到我们的目的,也就是说我们要先认清自己,不去刻意的模仿,找出最适合自己的一套方法。
乍一看这个观点觉得有点无脑,但是结合第二点就合理了,降低对精确性及原因结果的要求,通过对相关数据的广泛分析,进而得到更丰富更多元的结果。如购物时,系统的购物推荐,并不是肯定你会购买,仅仅是你感兴趣进而可能会买就足够了。其实作者对"相关关系"的强调,主要是大数据强大的预测能力,而且这种预测性能还是相当精确的。以上只是我用作者的观点佐证他自己的观点,证明其一定的合理性,但是我是不完全认同的,在航天领域,我们对成功率的要求是极高的,尤其是载人航天领域,我们必须做到万无一失,我们对每一个结果都会深究其根,找出原因。对于国防生体能成绩的分析也是如此,结果只是我们的一个评价机制,而最重要的还是产生这一结果的原因及过程。
第三部分是大数据的管理变革,本来以为作者会讲点如何通过大数据来改革管理机制和提高管理效率,没想到作者只是讲了大数据其实就是我们的隐私的暴露,提出了要让数据采集管理公司对数据的使用负起责任的解决途径。个人感觉,一是我们在平时要意识到个人隐私的保护,而是相关法律政策的完善,真正的让大数据服务我们的工作生活,而不是一种变相的威胁。
大数据课设的心得体会和感悟篇十二
《大数据时代》这本书写的很好,很值得一读,因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。下面是本站小编为大家收集整理的大数据时代。
总结,欢迎大家阅读。
利用周末,一口气读完了涂子沛的大作《大数据》。这本书很好看,行文如流水,引人入胜。书中,你读到的不是大数据技术,更多是与大数据相关的美国政治、经济、社会和文化的演进。作为一名信息化从业者,读完全书,我深刻感受到了在信息化方面中国与美国的各自特色,也看到了我们与美国的差距。有几个方面的体会,但窥一斑基本能见全貌。
一是政府业务数据库公开的广度和深度。近年来,随着我国信息公开工作的推进,各级政府都在通过政府门户网站建设积极推进网上政务信息公开,但我们的信息公开,现阶段还主要是政府的政策、法律法规、标准、公文通告、工作职责、办事指南、工作动态、人事任免等行政事务性信息的公开。当然,实时的政府业务数据库公开也已经取得很大进步。在中国政府门户网,可以查询一些公益数据库,如国家统计局的经济统计数据、环保部数据中心提供的全国空气、水文等数据,气象总局提供的全国气象数据,民航总局提供的全国航班信息等;访问各个部委的网站,也能查到很多业务数据,如发改委的项目立项库、工商局的企业信用库、国土资源部的土地证库、国家安监总局的煤矿安全预警信息库、各类工程招标信息库等等。这是一个非常大的进步,也是这么多年电子政务建设所取得的成效和价值!但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,还仅限于部门内部人员使用,没有公开给公众;已经公开的数据也仅限于一部分基本信息和统计信息,更多数据还没有被公开。从《大数据》一书中记录的美国数据公开的实践来看,美国在数据公开的广度和深度都比较大。美国人认为“用纳税人的钱收集的数据应该免费提供给纳税人使用”,尽管美国政府事实上对数据的公开也有抵触,但民愿不可违,美国政府的业务数据越来越公开,尤其是在奥巴马政府签署《透明和开放的政府》文件后,开放力度更加大。是美国联盟政府新建设的统一的数据开放门户网站,网站按照原始数据、地理数据和数据应用工具来组织开放的各类数据,累积开放378529个原始和地理数据集。在中国尚没有这样的数据开放的网站。另外,由于制度的不同,美国业务信息公开的深度也很大,例如,网上公布的美国总统“白宫访客记录”公布的甚至是造访白宫的各类人员的相关信息;美国的网站,能够逐条跟踪、记录、分析联邦政府每一笔财政支出。这在中国,目前应该还没有实现。
二是对政府对业务数据的分析。目前,中国各级政府网站所提供的业务数据基本上还是数据表,部分网站能提供一些统计图,但很少能实现数据的跨部门联机分析、数据关联分析。这主要是由于以往中国政务信息化的建设还处于部门建设阶段。美国在这方面的步伐要快一些,美国的网站,不仅提供原始数据和地理数据,还提供很多数据工具,这些工具很多都是公众、公益组织和一些商业机构提供的,这些应用为数据处理、联机分析、基于社交网络的关联分析等方面提供手段。如上提供的白宫访客搜索工具,可以搜寻到访客信息,并将白宫访客与其他微博、社交网站等进行关联,提高访客的透明度。
三是关于个人数据的隐私。在美国,公民的隐私和自有不可侵犯,美国没有个人身份证,也不能建立基于个人身份证号码的个人信息的关联,建立“中央数据银行”的提案也一再被否决。这一点,在中国不是问题,每个公民有唯一的身份信息,通过身份证信息,可以获取公民的基本信息。今后,随着国家人口基础数据库等基础资源库的建设,公民的社保、医疗等其他相关信息也能方便获取,当然信息还是限于政府部门使用,但很难完全保证整合起来的这些个人信息不被泄露或者利用。
数据是信息化建设的基础,两个大国在大数据领域的互相学习和借鉴,取长补短,将推进世界进入信息时代。我欣喜地看到,美国政府20xx年启动了“大数据研发计划”,投资2亿美元,推动大数据提取、存储、分析、共享、可视化等领域的研究,并将其与超级计算和互联网投资相提并论。同年,中国政府20xx年也批复了“国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。开放、共享和智能的大数据的时代已经来临!
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力??可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
-->。
大数据课设的心得体会和感悟篇十三
今年在集团公司的正确领导下,审计部严格遵守国家各项法律、法规,认真履行集团的《内部审计管理制度》。根据集团公司20__年度工作的总体要求和审计计划,内部审计工作以集团公司企业管理年为中心,加强企业精细化管理,突出重点,切实履行职责,较好地完成了全年审计工作计划和领导交办的审计任务,现就20__年度审计工作总结如下:。
一、完成主要工作。
20__年共完成审计项目97项,其中年度财务收支及年度预算执行状况审计12项,专项经营考核审计1项,任期经济职责审计2项,投资企业财务收支与资产负债审计3项,基建工程项目预算审计38项,基建工程项目结算审计41项,为完善集团经营管理、提高经济效益做出了贡献。
1、预算执行审计与财务收支审计并轨同行。
2、开展专项经营考核审计。
20cc年7月,公司为扭转__汽车租赁公司年年亏损局面,重新任命总经理,并与之签订经营考核职责书。为配合集团经营管理,审计部精心研读文件精神,深入企业了解经营状况,与相关单位反复磋商,报请主管领导审核,最终确认__汽车租赁公司的经营绩效考核结果,维护公司经营考核严肃性,同时也肯定了二级企业勤奋、用心的经营成果。
3、完善投资企业审计,带给投资评估依据。
为评价对外投资企业的管理效果的需要,根据集团公司领导安排对投资企业进行审计,对20cc年度省深汕、粤深、太壹等三家公司财务收支与资产负债审计,深入、综合评价投资公司的管理效益。个性是太壹公司经营合同到期,需对今后一段时间进行经营预测,为投资决策带给依据。
4、加强离任审计,带给人事管理参考。
20cc年,宝__原总经理、新_湖副总经理岗位变动,根据集团公司安排进行离任审计,对其任期内经营目标的完成、经营、资产管理等进行全面评价,为集团人事考核带给参考。
5、完善基建工程审计。
20__年,基建工程项目多,现场监管频繁、预结算审计任务繁重。工程审计人员深入工程项目现场,开展现场工程监督、材料审计等,纠正相关部门流程方面存在错误,做到实施事前项目审查、事中监督管理和事后造价控制的系统化工程审计模式。20__年完成基建工程项目预算审计38项,预算金额843。44万元,核减金额286。84万元;基建工程项目结算审计40项,结算报审金额1,392。40万元,核减金额384。39万元。
根据集团公司要求,对工程结算超过百万的基建项目,引进外部脑力与市场信息,公平、公正进行工程结算审核。20__年引进外部力量进行工程造价审核1项,结算报审金额228。13万元,核减金额119。93万元。为集团降低了工程造价,节省超多的资金。
二、主要工作体会。
1、集团领导重视,是推动内部审计工作的关键。
20__年度在集团公司主管领导的高度重视和支持下,克服审计部自有人手不足等困难,成功从二级企业借调财务部长等业务能手来支援,二级企业财务部长熟悉管理与业务流程,给审计工作进展带来必须便利,推动年度审计工作顺利完成。
2、加强过程管控,提升内审质量。
质量是内部审计工作的生命。审计部从制度、手段和成果管理等多个层面入手,全面提升内部审计工作质量。
在管理标准化方面,审计部在审计管理、内部控制、风险管理、审计档案等方面,制定和完善了管理办法和实施方案,详细规定审计年度计划制定、方案设计、证据收集、底稿日志编写、报告质量控制、档案管理等全流程标准体系,逐步构成一整套行之有效的内部审计制度体系。
在信息化方面,随着企业erp系统上线运行,erp系统丰富的信息量和强大的查寻与信息分析功能能够大大助力审计工作。审计人员用心学习erp流程操作、深化erp审计系统应用,着手开展erp环境下的项目审计工作。
3、延伸审计项目,合并审计目的,注重审计存在问题整改落实。
大数据课设的心得体会和感悟篇十四
大数据是当下热门的话题之一,它对各个行业都产生了深远的影响,尤其是对于银行业来说,大数据的应用已经成为了一种必然趋势。本文将从大数据对银行行业的意义、大数据用于银行的具体应用、大数据给银行带来的挑战、大数据技术发展对银行的启示以及我的个人感悟这五个方面,谈谈我对大数据和银行这个主题的心得体会。
首先,大数据对银行行业的意义是不言而喻的。银行是一个庞大的金融信息中心,每天都会产生大量的金融数据。大数据的应用就是通过对这些数据的收集、分析和挖掘,能够帮助银行更好地了解客户、进行风险管理、优化运营等。通过大数据的应用,银行可以更好地提供个性化的金融服务,提高运营效率和客户满意度。
其次,大数据在银行中的具体应用非常广泛。比如,利用大数据分析客户的消费习惯和需求,银行可以开展精准营销,推送更符合客户需求的产品;通过大数据分析客户的征信数据和交易行为,银行可以更准确地评估客户的信用风险;同时,银行可以利用大数据来监测金融市场的波动,及时进行风险管控等等。大数据的应用给银行带来了许多机会,使得银行能够更好地满足客户的需求,提高竞争力。
然而,大数据给银行也带来了一定的挑战。首先,银行需要投入大量的资金来购买和维护大数据分析平台,并招聘专业的数据分析师。其次,银行对于数据隐私和安全的要求非常高,大数据的应用会涉及到大量的个人隐私信息,如何在确保数据安全的前提下进行分析和应用是一个非常严峻的挑战。最后,对于银行而言,如何将海量的数据整合起来,并从中找到有价值的信息,也是一个不容忽视的问题。
然而,在面对这些挑战的同时,我们也可以从大数据技术的发展中找到一些启示。大数据技术的发展给银行带来了更多的可能性。随着人工智能和机器学习的快速发展,银行可以通过建立智能化的大数据分析系统,提高数据分析的准确性和效率,从而更好地支持业务发展。同时,银行还可以和其他行业进行数据的共享和合作,通过跨行业的数据应用,挖掘更多的商机。
最后,作为一名从业多年的银行从业者,我深刻感受到了大数据给银行带来的巨大变革和机遇。在过去,银行的业务主要以传统的柜面服务为主,但是随着大数据技术的应用,银行的业务已经从线下拓展到了线上,从传统金融服务转变为全方位的金融科技服务。大数据不仅提高了银行的效率和竞争力,也给了我个人职业发展带来了更多的机遇。
综上所述,大数据在银行行业的应用已经成为一种必然趋势,它对银行业的发展产生了深远的影响。尽管大数据应用面临挑战,但是通过持续改进和创新,我们相信大数据将会为银行带来更多的机遇和发展空间,同时也为我们银行从业者带来更多的个人发展机会。我相信,随着大数据技术的不断发展和创新,银行的未来将会变得更加智能化、高效化和个性化。
大数据课设的心得体会和感悟篇十五
随着互联网和信息技术的发展,物流行业也进入了数字化时代。物流大数据作为一种新兴的数据分析技术,正逐渐为物流企业带来巨大的商业价值。物流大数据是运用大数据技术和数理统计方法,对货物运输、仓储等各个环节的数据进行采集、分析和挖掘,从而为物流企业提供决策支持和业务优化。物流大数据不仅能提高物流效率,降低成本,还能预测市场需求,优化运输路线,改善客户服务体验,促进物流供应链的协同发展。
第二段:探讨物流大数据的应用领域和技术手段(200字)。
物流大数据的应用领域广泛,涵盖了供应链管理、仓储与库存、运输与配送、运输安全等方面。比如,通过对供应链中各个环节的数据分析,物流企业可以准确预测市场需求,合理配置仓储与库存,降低库存成本。此外,利用物流大数据还可以优化运输路线,提高运输效率,降低运输成本,确保货物安全。在技术手段方面,物流大数据主要依赖于云计算、无线通信、物联网等技术,通过传感器、RFID、GPS等设备实现对货物、车辆、仓库等重要信息的动态监控和数据采集。
第三段:分析物流大数据的优势和挑战(200字)。
物流大数据具有多方面的优势,首先是数据的时效性和准确性。物流大数据通过实时采集和处理,能够提供及时准确的信息支持,让企业能够做出更明智的决策。其次是数据的全面性和广泛性。物流大数据可以收集到各个环节的数据,综合分析后能够给出较为完整和全面的信息。最后是数据的挖掘和应用能力。物流大数据通过运用复杂的算法和模型,可以发现数据背后的规律和联系,并能够应用在实际的业务中。然而,物流大数据的挑战也不可忽视,包括数据安全与隐私保护、数据分析能力不足、数据共享合作机制等方面的问题。
第四段:总结物流大数据的应用案例和效果(300字)。
物流大数据已经在实际的物流企业中得到了广泛的应用,并取得了显著的效果。以零售物流为例,物流大数据可以通过分析顾客的购物记录、身份特征等信息,提供个性化的物流服务,实现定制化供应链。在城市配送方面,物流大数据能够通过分析交通流量、地理信息等数据,优化配送路线,减少拥堵和耗时。此外,物流大数据还能够通过监测仓储设备的工作状态、货物的运输状况等,提前预警并解决潜在的问题,确保货物运输的安全可靠。
第五段:展望物流大数据的未来发展和应用前景(300字)。
物流大数据是未来物流行业的重要趋势之一,其应用前景广阔。随着技术的进一步发展和成熟,物流大数据将更加智能化,实时化和个性化。未来,物流企业将能够通过物流大数据实现更精细的供应链管理和运费成本控制。同时,物流大数据还将与其他技术如人工智能和区块链等结合,进一步推动物流供应链的数字化转型。然而,要充分发挥物流大数据的作用,仍需要加强数据安全保护和隐私保护,同时加强对于物流大数据分析人才的培养和引进。
总结:在物流行业中,物流大数据技术将成为提升物流效率、降低物流成本的重要手段,也将为物流企业带来深远的商业价值。通过充分挖掘和应用物流大数据,我们能够更好地预测市场需求,优化供应链,提高运输效率,为客户提供更优质的服务。物流大数据的应用已经带来了显著的效果,并且在未来还有更广阔的发展空间。因此,物流企业应积极推进物流大数据的应用,注重数据分析和挖掘能力的提升,以顺应时代的发展趋势,不断提升自身的竞争力。
大数据课设的心得体会和感悟篇十六
随着信息技术不断发展,大数据已经开始渗透到各个行业,并为企业的发展提供了新的机遇。在银行业中,大数据的应用已经成为银行提高运营效率、优化客户服务以及预防风险的重要工具。在这一过程中,我深刻体会到了大数据对于银行的重要性与价值。
首先,大数据的应用帮助银行提高了运营效率。传统银行的业务繁琐,每天都需要处理大量的客户信息和交易数据。然而,在信息时代的背景下,这些数据已经成为了银行提高服务质量、提升客户体验的重要依据。利用大数据技术,银行可以快速整理并分析客户数据,通过运用高效的算法,提供更加个性化的金融产品和服务。同时,大数据技术还可以协助银行进行风险评估和行业研究,提前识别潜在风险,为银行的决策提供有力支持。这些都为银行提高运营效率、降低成本提供了有效手段。
其次,大数据的应用助力银行优化了客户服务。银行业不仅仅是提供金融服务的行业,更是一个建立长期信任关系的行业。传统的银行业务往往是通过柜台进行办理,客户需排队办理业务,办理效率低下。而有了大数据技术的应用,银行可以通过建立线上平台和智能系统,实现客户服务的全天候和无距离,大大缩短了客户等待时间,提高了办理效率。此外,大数据还可以分析客户的用卡习惯、借贷能力等信息,对客户进行精准营销,提供更加个性化的金融服务。这样的优化客户服务模式,不仅能够提升客户的满意度,还能够帮助银行开拓市场,提升市场竞争力。
再次,大数据的应用帮助银行实现了风险防范。作为金融行业的重要组成部分,风险防范一直是银行需要面对的重要任务。利用大数据技术,银行可以对海量的交易数据进行实时监测和分析,及时识别出风险行为,减少金融欺诈行为的发生。同时,大数据技术还可以帮助银行建立客户信用评级模型,预测客户的还款能力和信用风险。这样的风险评估模型能够大大提高银行的债务回收能力,减少坏账带来的损失。此外,大数据还可以进行反洗钱监测和欺诈检测,为银行提供更加全面的风险防控服务。
最后,大数据在银行业的应用还需要面对一些挑战。首先,数据安全问题是银行在大数据应用中需要重点关注的。银行每天产生的数据庞大且敏感,如何保证数据的安全性和隐私性是银行需要解决的问题。其次,银行需要培养更多的专业人才,具备数据分析和大数据技术应用能力,才能更好地利用大数据进行业务创新。此外,银行还需要与其他行业和科技企业展开合作,共同推进大数据技术在金融领域的应用和创新。
综上所述,大数据在银行业的应用巨大的改变了银行的运营模式和服务方式,提高了银行的运营效率、优化了客户服务以及加强了风险防范。然而,大数据应用仍面临一些挑战,需要银行在数据安全和人才培养方面加以解决。相信随着技术的进一步发展和银行的不断创新,大数据将为银行带来更多机遇和价值。
大数据课设的心得体会和感悟篇十七
互联网数据分析员个人简历模板就在下面,互联网运营数据分析的一个很重要的'基础是网站分析,想要面试这一工作的求职者,在写简历的时候你们是怎么写的?今天的app分析、流量分析等等都是在网站分析的基础之上发展起来的,下面我们一起看看吧!
大数据课设的心得体会和感悟篇十八
《大数据》不是一本纯技术的书籍,作者用美国多年来丰富而详细的案例说明了大数据的趋势和发展历程,大数据的初衷就是将一个公开、高效的政府呈现在人民眼前。书中从美国《信息自由法》说起,其发展历程充满了坎坷,经过各个时期信息自由倡议者的努力,终于出现端倪,并迅速成长,充分体现出美国政府的信息必须被公开,以及个人的隐私必须被保护。人类可以“分析和使用”的数据在大量增加,通过这些数据的交换、整合和分析,人类可以发现新的知识,创造新的价值,带来“大知识”、“大科技”、“大利润”和“大发展”。
《大数据》开篇讲述美国《信息自由法》历经多任总统,其中有支持者,也有反对者,最后终于签发,标志都美国进入信息公开及隐私保护的大数据时代。现如今全世界现有60多个国家制定、实施《信息自由法》。
随着《信息自由法》的颁布,以及现代科技的发展,会产生越来越多的数据。数据主要来源是:1.各行各业通过计算机产生了大量的数据;2.业务数据3.民意数据4.环境数据。并且数据在数量、速度、多样性三个维度迅速增长,促使数据帝国逐渐兴起。
有了这么多数据,应该如何利用?
首先,在治国方面。1.循“数”管理,减少交通事故死亡人数。2.用数据进行医疗福利打假,可为政府节省开支。3.警方通过compstat系统,分析犯罪数据,预知犯罪地点。
其次,商务智能方面。1.数据仓库,2.联机分析(olap),3.数据挖掘,4.数据可视化。
当然随着数据的增多,如何收集和使用这些数据,就需要制订一系列的法则。1.收集法则:减负;2.使用法则:隐私;3.发布法则:免费,4.管理法则:质量。其中数据质量最为重要,为了保证数据质量颁布了《数据质量法》,同时也带来了困惑,即给商业组织带来了质疑政府公布数据质量的手段,对于这一手段,满足其商业利益,是民主与商业组织之间的对抗和冲突。
同时,统一分析和使用大数据与个人隐私产生的冲突。通过中央数据银行和全国统一id就获得某个人一生的行动,违反了个人隐私法,但不分析这些信息,又可能导致恐怖分子的袭击,最终以保护个人隐私胜利,但政府还是想执行统一身份认证。
奥巴马的上任加速了政府数据开放的进程,奥巴马上任后立即任命首席信息官,由首席信息官在4个月内推出政府大数据网站,在互联网上为民众提供开放的政府数据。阳光基金会和个人利用开放数据开发出各种分析工具,充分体现出数据价值。
但公益组织并不满足开放数据的数量,为了让民众监督一个更为公正透明的政府,公益组织要求公开白宫访客记录,但这并不是一个简单的要求。经过公益组织不懈的努力,白宫终于公开了访客记录,但公益组织发现了更多的问题,白宫也提出将继续修改访客记录的方式。
大数据有效的监督了政府的公正与民主。民主不是一个结果,而是参与的过程,人民要不断的争取才能实现民主。
本书结尾也较详细的描述除美国外,其它各国通过大数据走向民主的进程,充分说明了这一进程是一个大趋势。首先,英国紧随美国后面实施数据开放,虽然晚于美国,但发展飞快,开放的数据量已超过美国。其次,即美、英两国开放数据之后,更多的国家也加入到其中。20xx年9月20日,8个国家宣布成立“开放政府联盟”,要想加入需具备4个条件:1.财政透明,2.信息自由,3.财产公开,4.公民参与。截止20xx年4月25日已有50个国家加入。
在大数据时代,数据就是直接的财富,数据分析和挖掘能力就是国家、企业的核心竞争力。中国应该摘下千百年来差不多先生的标签,尽快赶上西方国家大数据的步伐。
大数据课设的心得体会和感悟 大数据心得体会(模板18篇)热门心得体会范文范文推荐: