当前位置: 首页 > 心得体会 > 工作心得

运筹学心得体会优秀6篇

时间:2023-11-07 工作心得 我要投稿

各位考生在填报志愿的时候,往往会考虑专业的就业前景,大家对自己感兴趣的专业都想了解其就业前景,这毕竟是影响一生的选择,网络的小编精心为您带来了6篇《运筹学心得体会》,亲的肯定与分享是对我们最大的鼓励。

公文汇,办公文档之家

运筹学心得体会 篇一

中国古代著名的例子“田忌赛马”,通过巧妙的安排部署马匹的出场顺序,利用了现有马匹资源的最大效用,设计出了一个最优的方案,这就是对运筹学中博弈论的运用,那么运筹学与我们的生活息息相关。

稿子汇,范文学习文库

自古以来,运筹学就无处不在。小到菜市场买菜的大妈,大到做军事部署的国家元首,都会用到运筹学。当我们为选择去哪里旅游而犹豫不决,比对了很久终于找到一条最优路线时;当我们考试之前想临时抱佛脚,用最短时间复习而考到尽量高的分数时无形之中,我们已经在运用运筹学不断的解决我们生活中的问题了。 公文汇,办公文档之家

运筹学是一应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。 研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学等专业密切相关。 公文汇,办公文档之家

现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。

公文汇 www.gongwenhui.com

运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法。“运筹”一词,本指运用算筹,后引伸为谋略之意。“运筹”最早出自于汉高祖刘邦对张良的评价:“运筹帷幄之中,决胜千里之外。”但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。二次大战时,英军首次邀请科学家参与军事行动研究(operations research, 在英国又称operational research或OR/MS, management science),战后这些研究结果用于其他用途,这是现代“运筹学”的起源。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。

本学期,经过10周的学习,我对运筹学也有了一定的认识和了解,并且能够运用运筹学解决一些实际生活中的问题。经过学习我了解到运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等。

一、运筹学的研究方法有:

1、从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解。

2、探索求解的结构并导出系统的求解过程。

3、从可行方案中寻求系统的最优解法。

二、线性规划:

数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。

线性规划的某些特殊情况,例如网络流、多商品流量等问题,都被认为非常重要,并有大量对其算法的专门研究。很多其他种类的最优化问题算法都可以分拆成线性规划子问题,然后求得解。在历史上,由线性规划引申出的很多概念,启发了最优化理论的核心概念,诸如“对偶”、“分解”、“凸性”的重要性及其一般化等。同样的,在微观经济学和商业管理领域,线性规划被大量应用于解决收入极大化或生产过程的成本极小化之类的问题。

三、动态规划:

对于多阶段决策的最优化问题,动态规划方法属较科学有效的算法。它的基本思想是,把一个比较复杂的问题分解为一系列同类型的更易求解的子问题,便于应用计算机。整个求解过程分为两个阶段,先按整体最优的思想逆序地求出各个子问题中所有可能状态的最优决策与最优路线值,然后再顺序地求出整个问题的最优策略和最优路线。计算过程中,系统地删去了所有中间非最优的方案组合,从而使计算工作量比穷举法大为减少。简单地说,问题能够分解成子问题来解决。

四、步骤:

1、应将实际问题恰当地分割成n个子问题(n个阶段)。通常是根据时间或空间而划分的,或者在经由静态的数学规划模型转换为动态规划模型时,常取静态规划中变量的个数n,即k=n。

2、正确地定义状态变量sk,使它既能正确地描述过程的。状态,又能满足无后效性.动态规划中的状态与一般控制系统中和通常所说的状态的概念是有所不同的。

3、正确地定义决策变量及各阶段的允许决策集合Uk(sk),根据经验,一般将问题中待求的量,选作动态规划模型中的决策变量。或者在把静态规划模型(如线性与非线性规划)转换为动态规划模型时,常取前者的变量xj为后者的决策变量uk。

4、能够正确地写出状态转移方程,至少要能正确反映状态转移规律。

5、根据题意,正确地构造出目标与变量的函数关系——目标函数。

6、写出动态规划函数基本方程。

五、图论:

图论在《离散数学》就有讲过。著名的“柯尼斯堡七桥问题”是图论的源起。此问题被推广为著名的欧拉路问题,亦即一笔画问题。而此论文与范德蒙德的一篇关于骑士周游问题的文章,则是继承了莱布尼茨提出的“位置分析”的方法。欧拉提出的关于凸多边形顶点数、棱数及面数之间的关系的欧拉公式与图论有密切联系,此后又被柯西等人进一步研究推广,成了拓扑学的起源。1857年,哈密顿发明了“环游世界游戏”(icosian game),与此相关的则是另一个广为人知的图论问题“哈密顿路径问题”。图论是一个古老的但又十分活跃的分支,它是网络技术的基础。图论中图是现实中“图”的抽象和概括,它用点表示研究对象,用边表示这些对象之间的联系。通常比较重要的问题是子图相关问题、染色问题、路径问题、网络流于匹配问题、覆盖问题等。

六、决策论:

决策论是我自己比较感兴趣的一个章节。决策论是根据信息和评价准则,用数量方法寻找或选取最优决策方案的科学,是运筹学的一个分支和决策分析的理论基础。在实际生活与生产中对同一个问题所面临的几种自然情况或状态,又有几种可选方案,就构成一个决策,而决策者为对付这些情况所取的对策方案就组成决策方案或策略。决策论是一个交叉学科,和数学、统计、经济学、哲学、管理和心理学相关。决策问题根据不同性质通常可以分为确定型、风险型(又称统计型或随机型)和不确定型三种。

七、确定型决策:

是研究环境条件为确定情况下的决策。确定型决策问题通常存在着一个确定的自然状态和决策者希望达到的一个确定目标(收益较大或损失较小),以及可供决策者选择的多个行动方案,并且不同的决策方案可计算出确定的收益值。这种问题可以用数学规划,包括线性规划、非线性规划、动态规划等方法求得最优解。但许多决策问题不一定追求最优解,只要能达到满意解即可。

八、风险型决策:

是研究环境条件不确定,但以某种概率出现的决策。风险型决策问题通常存在着多个可以用概率事先估算出来的自然状态,及决策者的一个确定目标和多个行动方案,并且可以计算出这些方案在不同状态下的收益值。决策准则有期望收益最大准则和期望机会损失最小准则。

九、不确定型决策:

是研究环境条件不确定,可能出现不同的情况(事件),而情况出现的概率也无法估计的决策。这时,在特定情况下的收益是已知的,可以用收益矩阵表示。不确定型决策问题的方法有乐观法、悲观法、乐观系数法、等可能性法和后悔值法等。

运筹学心得体会 篇二

从6月25日开始至今,学习《运筹学》已经有一个学期了。在这一个学期里,我们在张老师的帮助下,学习了有关运筹学的基础理论、应用方法的技巧等知识,使得我更进一步的了解到运筹学的实践意义的重要性。

运筹学是经济管理类专业的核心基础课之一,他体现了“优化”的思想,学习运筹学,可以提高一个人的组织,协调和控制能力,而这些对于我现在的本职工作来说就更具有现实的指导意义。运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。运筹学涉及到建立数学模型与求解的方法问题,这能够为实际问题的概括与提炼提供很好的解决方案。

通过这段时间对运筹学的学习,使我获得了不少的收获,我虽是理科专业出生,但是数学相关的东西学的比较吃力,而运筹学偏理科,虽然学起来有点吃力,但是我还是坚持下来了,在这要感谢运筹学张伟老师的耐心指导。张老师在课堂上,把运筹学例题讲解得清晰而精彩,使我更深刻的`体会到运筹学对我生活的重要性和指导应用的重要意义。相信在今后的生活和工作中,运筹学对我的帮助会有更多的指导和实践意义,运筹学的逻辑思想就是“从提出问题开始,然后到分析建模,最后求解方案”,这个解决问题的方式方法是科学而严密的,也是值得推广的,我想,在今后我要把运筹学的思想贯彻到我的工作和生活当中,做一个会做事,也会学以致用的人。

以上是我学习运筹学的心得体会。

运筹学心得体会 篇三

古人作战讲“夫运筹帷幄当中,决胜千里之外”。在现代贸易社会中,更加讲求运筹学的利用。作为一位物流管理的学生,更应当能够熟练地把握、应用运筹学的精华,用运筹学的思惟思考题目。即:利用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行兼顾安排。本着这样的心态,在本学期运筹学行将结课之时,我得出以下关于运筹学的知识。是虽上机考试没有通过,感到不安,但是我明白要将理论联系实际,才能更好的发挥。

线性规划解决的是:在资源有限的条件下,为到达预期目标最优,而寻觅资源消耗最少的方案。其数学模型有目标函数和束缚条件组成。

一个题目要满足一下条件时才能归结为线性规划的模型:

⑴要求解的题目的目标能用效益指标度量大小,并能用线性函数描写目标的要求;

⑵为到达这个目标存在很多种方案;

⑶要到达的目标是在一定束缚条件下实现的,这些条件可以用线性等式或不等式描写。

解决线性规划题目的关键是找出他的目标函数和束缚方程,并将它们转化为标准情势。简单的设计2个变量的线性规划题目可以直接应用图解法得到。但是经常在现实生活中,线性规划题目触及到的变量很多,很难用作图法实现,但是应用单纯形法记比较方便。

单纯形法的发展很成熟利用也很广泛,在应用单纯形法时,需要先将题目化为标准情势,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。

碰到评价同类型的组织的工作绩效相对有效性的题目时,可以用数据包络进行分析,应用数据包络分析的的决策单元要有相同的投入和相投的产出。

对偶理论:其基本思想是每个线性规划题目都触及一个与其对偶的题目,在求一个解的时候,也同时给出另外一题目的`解。

对偶题目有:对称情势下的对偶题目和非对称情势下的对偶题目。非对称情势下的对偶题目需要将原题目变形为标准情势,然后找出标标准情势的对偶题目。由于对偶题目存在特殊的基本性质,所以我们在解决实际题目比较困难时可以将其转化成其对偶题目进行求解。

灵敏度分析:分析在线性规划题目中,一个或几个参数的变化对最优解的影响题目。可以分析目标函数中变量系数、束缚条件的右端项、增加一个束缚变量、增加一个束缚条件、束缚条件的系数矩阵中的参数值等的变化。假如将题目转化为研究参数值在保持最优解或最优基不变时的答应范围或改变到某一值时对题目最优解的影响时,就属于参数线性规划的内容。

运输题目是解决多个产地和多个销地之间的同品种物品的规划题目。根据运输题目的独特性,一般采用一种简单而有效的方法:表上作业法。

表上作业法先找出运输题目的基可行解,方法有:最小元素法、西北角法、沃格尔法。其中沃格尔法得出的解最接近最优解。然后利用闭回路法或对偶变量法对得到解进行最优性辨别。当检验的结果为非最优解时,进行解的改进,然后再进行最优性辨别,直到所有的非基变量检验数全非负,得到最优解。在解决运输题目时会碰到产销不平衡的情况,在该情况下,要将该题目转化为产销平衡题目,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。

整数规划是解决决策变量只能取整数的规划题目,整数规划的解法有割平面法和分支定解法。

整数规划中的0-1规划整数题目是一个非常有用的方法。在实际题目中,该方法能够解决很多题目。

0-1整数规划的解决方法有枚举法和隐枚举法。指派题目是0-1整数规划中的特例,现在采用的解法通常是匈牙利法,由于指派题目的特殊性,使用匈牙利法可以有效的减少计算量。

学习理论的目的就是为了解决实际题目。线性规划的理论对我们的实际生活指导意义很大。

当我们碰到一个题目,需要认真考察该题目。假如它合适线性规划的条件,那末我们就利用线性规划的理论解决该题目。但是很多时候我们碰到的题目用线性规划解决耗时、正确度低或根本没法用线性规划解决。那么我们就要寻觅别的理论方法来解决题目,即:非线性规划。关于非线性规划的理论还没有深入学习,暂将我的学习所得进行到此。

运筹学心得体会 篇四

相信大家都知道,田忌赛马的故事,从中我们不难发现在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。古人作战讲"夫运筹帷幄之中,决胜千里之外"也就是这个道理。

运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。从最直观、明了的角度将运筹学定义为:"通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。"

运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等。而《应用运筹学》作为运筹学的一部分,则重点介绍了管理运筹的思想与建模方法,具体包括了线性规划及扩展问题模型、图与网络分析模型、项目管理技术、决策分析技术、库存模型和排队模型等运筹学的重要分支。其主要特点是注重运筹学原理及方法在解决实际管理问题时应用,突出了管理问题的分析和运筹模型的构建过程,淡化了模型的理论推导和数学计算,借助于十分普及的Excel软件来求解模型,使得运筹学模型的应用更加简明直观。

线性规划是运筹学的一个重要分支。线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 图论是一个古老的但又十分活跃的分支,它是网络技术的基础。在日常生活和生产中,人们会经常碰到各种各样的图,如零件加工图、公路或铁路交通图、管网图等。图论中图是上述各种类型图的抽象和概括,它用点表示研究对象,用边表示这些对象之间的联系。而图与网络分析是近几十年来运筹学领域中发展迅速、而且十分灵活的一个分支。由于它对实际问题的描述,具有直观性,故广泛应用与物理学、化学、信息论、控制论、计算机科学、社会科学、以及现代经济管理科学等许多科学领域。

项目管理技术就是在时间、成本、质量、风险、合同、采购、人力资源等各个方面对项目进行的计划和控制。其中项目管理的核心思想是对进度的管理和成本的控制。

决策分析技术是属决策论的一部分。主要是在研究决策问题。所谓决策就是根据客观可能性,借助一定的理论、方法和工具,科学地

选择最优方案的过程。决策问题是由决策者和决策域构成的,而决策域又由决策空间、状态空间和结果函数构成。研究决策理论与方法的'科学就是决策科学。

库存模型则主要是对库存论的一种实际应用。库存论是一种研究物质最优存储及存储控制的理论,物质存储时工业生产和经济运转的必然现象。如果物质存储过多,则会占用大量仓储空间,增加保管费用,使物质过时报废从而造成经济损失;如果存储过少,则会因失去销售时机而减少利润,或因原料短缺而造成停产。因而如何寻求一个恰当的采购,存储方案就成为库存论研究的对象。

排队模型在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。排队论又叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。

学习理论的目的就是为了解决实际问题。图论为计算机领域也奠定了基础,运筹学的计算方法可以借用计算机来完成。线性规划的理论对我们的实际生活指导意义很大。当我们遇到一个问题,需要认真考察该问题。如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。那么我们就要寻找别的

理论方法来解决问题。通过对此次对应用运筹学的学习我掌握了运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。应用运筹学对我们以后的生活也讲有不小的影响,将应用运筹学运用到实际问题上去,学以致用。

运筹学心得体会 篇五

古人作战讲"夫运筹帷幄之中,决胜千里之外"。在现代商业社会中,更加讲求运筹学的应用。作为一名物流管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。即:应用分析、试验、量化的办法,对现实生活中人、财、物等有限资源开展统筹部署。本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。是虽上机考试没有通过,感到不安,但是我明白要将理论联系现实,才能更好的发挥。

线性筹划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。一个问题要满足一下条件时才能归结为线性筹划的模型:

⑴规定解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的规定;

⑵为达到这个目标存在不少种方案;

⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。解决线性筹划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。简单的设计2个变量的线性筹划问题可以直接运用图解法得到。但是往往在现实生活中,线性筹划问题涉及到的变量不少,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的成长很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,开展单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算完毕。将所得的量的值代入目标函数,得出最优值。

遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络开展分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。

对偶理论:其基本思想是每一个线性筹划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决现实问题比较困难时可以将其转化成其对偶问题开展求解。

灵敏度分析:分析在线性筹划问题中,一个或几个参数的变化对最优解的影响问题。可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。如果将问题转化为研究参数值在保持最优解或最优基不变时的允许范围或改变到某一值时对问题最优解的影响时,就属于参数线性筹划的内容。

运输问题是解决多个产地和多个销地之间的同品种物品的筹划问题。根据运输问题的独特性,一般采用一种简单而有效的办法:表上作业法。表上作业法先找出运输问题的基可行解,办法有:最小元素法、西北角法、沃格尔法。其中沃格尔法得出的解最接近最优解。然后利用闭回路法或对偶变量法对得到解开展最优性判别。当检验的结果为非最优解时,开展解的改进,然后再开展最优性判别,直到所有的非基变量检验数全非负,得到最优解。在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的`变量在目标函数中的系数设为零即可。

整数筹划是解决决策变量只能取整数的筹划问题,整数筹划的解法有割平面法和分支定解法。整数筹划中的0-1筹划整数问题是一个非常有用的办法。在现实问题中,该办法能够解决不少问题。0-1整数筹划的解决办法有枚举法和隐枚举法。指派问题是0-1整数筹划中的特例,现在采用的解法一般为匈牙利法,由于指派问题的特殊性,使用匈牙利法可以有效的减少计算量。

学习理论的目的就是为了解决现实问题。线性筹划的理论对我们的现实生活指导意思很大。当我们遇到一个问题,需要认真考察该问题。如果它适合线性筹划的条件,那么我们就利用线性筹划的理论解决该问题。但是不少时候我们遇到的问题用线性筹划解决耗时、准确度低或者根本无法用线性筹划解决。那么我们就要寻找别的理论办法来解决问题,即:非线性筹划。关于非线性筹划的理论还没有深入学习,暂将我的学习所得开展到此。

运筹学心得体会 篇六

从6月25日开始至今,学习《运筹学》已经有一个多月了。在这一个多月里,我们在熊老师的帮助下,学习了有关运筹学的基础理论、应用方法的技巧等知识,使得我更进一步的了解到运筹学的实践意义的重要性,特别是在熊老师的案例讲解中,更是体会到运筹学对我们生活的方方面面所具有的指导作用。

运筹学是经济管理类专业的核心基础课之一,他体现了“优化”的思想,学习运筹学,可以提高一个人的组织,协调和控制能力,而这些对于我现在的本职工作来说就更具有现实的指导意义。运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。运筹学涉及到建立数学模型与求解的方法问题,这能够为实际问题的概括与提炼提供很好的解决方案。在熊老师的课堂上,更是把运筹学的实际运用给我们讲授得清清楚楚,使我们对学习运筹学充满了兴趣。并在熊老师的指导下,我逐渐学会了把运筹学的方法和思想应用到我的工作和生活中,给我带来了很多意想不到的收获。

我从事的工作是市场营销专业的教学工作,并担任着多门市场营销专业课程的教学,如何上好这些课程并做好课程教学创新是令人头疼的事情?然而幸运的是,通过这段时间对运筹学的学习,我发现了运用运筹学帮我解决教学工作出现的问题的方法。比如说:

一、在上《市场营销案例分析》这门课时,我可以运用运筹学中“运输与指派问题”的方法来解决课堂学生的学习积极性问题,有效的调动学生的积极性,具体做法如下:

1、首先将学生按人数均等的分为4个小组,然后给出案例,让学生以小组的形式讨论案例的内容,并要求学生解决案例中出现的问题的方案。

2、其次,让学生在有限的信息和大量的不确定性的条件下,积极的运用自己的智力和情感,不断的锻炼自己面对复杂问题做出决策的能力。

3、学生通过讨论和对案例所显示的数据的分析,可以得到自己小组的结论,而且甚至可以提出新的问题。

4、最后,由教师总结并与学生一起对他们的分析进行比较和验证,最后找出最优的解决方案。

在这样的课堂教学中,已经将学生完全融入到课堂主角的这个角色中,教师只是在其中扮演着一个配角的辅助作用,这是非常有意义的教学形式,而这种课堂的教学方法是属于对运筹学中“运输指派问题”的应用。在这样的课堂中运用“运输指派问题”主要是在于找出解决案例中问题的最优方案的方法,让学生分小组讨论也就是希望可以得到多种解决案例中提出的问题的解决方案,然后再在多种方案中,由教师引导学生寻找出最优方案的一个课堂管理教学模式,这样做使得整个教学课堂有了更多的师生互动性,从而使得课堂的气氛变得活跃起来,学生也会对市场营销案例分析这门课充满兴趣。

二、在上《市场营销调研》这门课时,我可以运用运筹学中“目标规划”的方法来解决学生完成调研任务的评估结果问题。“目标规划”原来是指研究企业考虑现有的资源的条件下,在多个经营目标中去寻求满意解,即使得达到目标的总体结果离事先制定目标的差距最小。运用这一思想的指导,我的《市场营销调研》课的教学方法可以做如下的改变:

1、指导我的学生进行实践调研的`时候,首先要给学生制定一个调研的目标和调研报告的标准,(这包括调研所花费的时间限制、调研的内容、调研数据要求等)这样做是为了让学生在调研的过程中遵照科学的原则充分去调动自己的积极性,并能够促使学生自觉的形成自己的调研规划设计,提高学生的动手能力。

2、当学生完成自己的调研数据的收集工作后,要指导学生进行调研数据的整理和分析,在这个过程中,有些学生也许会因为某些原因不能按照要求全部完成规定的调研任务,但是,这部分学生却使自己的动手能力得到了提高,也锻炼了自己应对出现困难问题的能力,这在某种程度上说也是可以被接受完成调研工作的任务目标的。因为对于教师的教学来说,学生学习的过程比结果更有意义。而且,学生也可以通过学习的过程锻炼自己的能力这也是可行的。

那么,在运筹学中的“目标规划”的思想告诉了我一个道理,对目标的规划是必须的,但有时,我们的工作并不能完全做到实现目标的理想状态,但是,在现实生活中,当我们的工作和生活状态能够做到与目标接近,或与目标差距最小,那么我们也可以认为我们是成功的。在这要套用熊老师的一句话,“运筹学中的目标规划问题的解决是现实生活中相对意义下的满意,而不是绝对意义上的最优”。

综上所述,通过这段时间对运筹学的学习,使我获得了不少的收获,我本来是文科专业出生,而运筹学偏理科,虽然学起来有点吃力,但是我还是坚持下来了,在这要感谢运筹学熊伟老师的耐心指导。熊老师在课堂上,把运筹学与生活相结合,特别是在讲授运筹案例的时候,更是讲解得清晰而精彩,使我更深刻的体会到运筹学对我生活的重要性和指导应用的重要意义。相信在今后的生活和工作中,运筹学对我的帮助会有更多的指导和实践意义,运筹学的逻辑思想就是“从提出问题开始,然后到分析建模,最后求解方案”,这个解决问题的方式方法是科学而严密的,也是值得推广的,我想,在今后我要把运筹学的思想贯彻到我的工作和生活当中,做一个会做事,也会学以致用的人。

它山之石可以攻玉,以上就是网络范文为大家带来的6篇《运筹学心得体会》,希望对您有一些参考价值。

运筹学心得体会优秀6篇
热门心得体会范文范文推荐:

★践行人民至上生命至上心得体会(优秀8篇)

★2023年初中军训心得体会(精选14篇)

★2023年许林芳有效沟通心得体会 观有效沟通心得体会(模

★最新如何进行有效沟通心得体会(实用18篇)

★2023年如何有效沟通心得体会(精选15篇)

★保护海洋环境的宣传语 保护海洋心得体会(实用15篇)

内容仅供学习,如需复制请赞助VIP会员,赞助后即可全站范文免费复制!


赞助会员请点击:开通会员

×